Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
BMJ Mil Health ; 2020 Dec 28.
Article in English | MEDLINE | ID: covidwho-2297075

ABSTRACT

In the face of the COVID-19 outbreak, military healthcare teams were deployed to London to assist the London Ambulance Service t transfer ventilated patients between medical facilities. This paper describes the preparation and activity of these military teams, records the lessons identified (LI) and reviews the complications encountered'. The teams each had two members. A consultant or registrar in emergency medicine (EM) and pre-hospitalemergency medicine (PHEM)E or anaesthesia and an emergency nurse or paramedic. Following a period of training, the teams undertook 52 transfers over a 14-day period. LI centred around minimising both interruption to ventilation and risk of aerosolisation of infectious particles and thus the risk of transmission of COVID-19 to the treating clinicians. Three patient-related complications (6% of all transfers) were identified. This was the first occasion on which the Defence Medical Services (DMS) were the main focus of a large-scale clinical military aid to the civil authorities. It demonstrated that DMS personnel have the flexibility to deliver a novel effect and the ability to seamlessly and rapidly integrate with a civilian organisation. It highlighted some clinical lessons that may be useful for future prehospital emergency care taskings where patients may have a transmissible respiratory pathogen. It also showed that clinicians from different backgrounds are able to safely undertake secondary transfer of ventilated patients. This approacmay enhance flexibility in future operational patient care pathways.

3.
Critical Care and Resuscitation ; 23(4):403-413, 2021.
Article in English | Web of Science | ID: covidwho-1761763

ABSTRACT

Objective: To assess the performance of the UK International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) Coronavirus Clinical Characterisation Consortium (4C) Mortality Score for predicting mortality in Australian patients with coronavirus disease 2019 (COVID-19) requiring intensive care unit (ICU) admission. Design: Multicentre, prospective, observational cohort study. Setting: 78 Australian ICUs participating in the SPRINT-SARI (Short Period Incidence Study of Severe Acute Respiratory Infection) Australia study of COVID-19. Participants: Patients aged 16 years or older admitted to participating Australian ICUs with polymerase chain reaction (PCR)confirmed COVID-19 between 27 February and 10 October 2020. Main outcome measures: ISARIC-4C Mortality Score, calculated at the time of ICU admission. The primary outcome was observed versus predicted in-hospital mortality (by 4C Mortality and APACHE II). Results: 461 patients admitted to a participating ICU were included. 149 (32%) had complete data to calculate a 4C Mortality Score without imputation. Overall, 61/461 patients (13.2%) died, 16.9% lower than the comparable ISARIC-4C cohort in the United Kingdom. In patients with complete data, the median (interquartile range [IQR]) 4C Mortality Score was 10.0 (IQR, 8.0-13.0) and the observed mortality was 16.1% (24/149) versus 22.9% median predicted risk of death. The 4C Mortality Score discriminatory performance measured by the area under the receiver operating characteristic curve (AUROC) was 0.79 (95% CI, 0.68-0.90), similar to its performance in the original ISARIC-4C UK cohort (0.77) and not superior to APACHE II (AUROC, 0.81;95% CI, 0.75-0.87). Conclusions: When calculated at the time of ICU admission, the 4C Mortality Score consistently overestimated the risk of death for Australian ICU patients with COVID-19. The 4C Mortality Score may need to be individually recalibrated for use outside the UK and in different hospital settings. Crit Care Resusc 2021;23 (4): 403-13

4.
Critical Care and Resuscitation ; 23(3):308-319, 2021.
Article in English | Scopus | ID: covidwho-1743252

ABSTRACT

Objective: To report longitudinal differences in baseline characteristics, treatment, and outcomes in patients with coronavirus disease 2019 (COVID-19) admitted to intensive care units (ICUs) between the first and second waves of COVID-19 in Australia. Design, setting and participants: SPRINT-SARI Australia is a multicentre, inception cohort study enrolling adult patients with COVID-19 admitted to participating ICUs. The first wave of COVID-19 was from 27 February to 30 June 2020, and the second wave was from 1 July to 22 October 2020. Results: A total of 461 patients were recruited in 53 ICUs across Australia;a higher number were admitted to the ICU during the second wave compared with the first: 255 (55.3%) versus 206 (44.7%). Patients admitted to the ICU in the second wave were younger (58.0 v 64.0 years;P = 0.001) and less commonly male (68.9% v 60.0%;P = 0.045), although Acute Physiology and Chronic Health Evaluation (APACHE) II scores were similar (14 v 14;P = 0.998). High flow oxygen use (75.2% v 43.4%;P < 0.001) and non-invasive ventilation (16.5% v 7.1%;P = 0.002) were more common in the second wave, as was steroid use (95.0% v 30.3%;P < 0.001). ICU length of stay was shorter (6.0 v 8.4 days;P = 0.003). In-hospital mortality was similar (12.2% v 14.6%;P = 0.452), but observed mortality decreased over time and patients were more likely to be discharged alive earlier in their ICU admission (hazard ratio, 1.43;95% CI, 1.13–1.79;P = 0.002). Conclusion: During the second wave of COVID-19 in Australia, ICU length of stay and observed mortality decreased over time. Multiple factors were associated with this, including changes in clinical management, the adoption of new evidence-based treatments, and changes in patient demographic characteristics but not illness severity. © 2021, College of Intensive Care Medicine. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL